additional authors not shown
Abstract:Large language models (LLMs), despite their powerful capabilities, suffer from factual hallucinations where they generate verifiable falsehoods. We identify a root of this issue: the imbalanced data distribution in the pretraining corpus, which leads to a state of "low-probability truth" and "high-probability falsehood". Recent approaches, such as teaching models to say "I don't know" or post-hoc knowledge editing, either evade the problem or face catastrophic forgetting. To address this issue from its root, we propose \textbf{PretrainRL}, a novel framework that integrates reinforcement learning into the pretraining phase to consolidate factual knowledge. The core principle of PretrainRL is "\textbf{debiasing then learning}." It actively reshapes the model's probability distribution by down-weighting high-probability falsehoods, thereby making "room" for low-probability truths to be learned effectively. To enable this, we design an efficient negative sampling strategy to discover these high-probability falsehoods and introduce novel metrics to evaluate the model's probabilistic state concerning factual knowledge. Extensive experiments on three public benchmarks demonstrate that PretrainRL significantly alleviates factual hallucinations and outperforms state-of-the-art methods.
Abstract:The quadratic complexity and indefinitely growing key-value (KV) cache of standard Transformers pose a major barrier to long-context processing. To overcome this, we introduce the Collaborative Memory Transformer (CoMeT), a novel architecture that enables LLMs to handle arbitrarily long sequences with constant memory usage and linear time complexity. Designed as an efficient, plug-in module, CoMeT can be integrated into pre-trained models with only minimal fine-tuning. It operates on sequential data chunks, using a dual-memory system to manage context: a temporary memory on a FIFO queue for recent events, and a global memory with a gated update rule for long-range dependencies. These memories then act as a dynamic soft prompt for the next chunk. To enable efficient fine-tuning on extremely long contexts, we introduce a novel layer-level pipeline parallelism strategy. The effectiveness of our approach is remarkable: a model equipped with CoMeT and fine-tuned on 32k contexts can accurately retrieve a passkey from any position within a 1M token sequence. On the SCROLLS benchmark, CoMeT surpasses other efficient methods and achieves performance comparable to a full-attention baseline on summarization tasks. Its practical effectiveness is further validated on real-world agent and user behavior QA tasks. The code is available at: https://anonymous.4open.science/r/comet-B00B/
Abstract:Large Language Models (LLMs) have demonstrated exceptional capabilities across diverse tasks. However, their deployment in long context scenarios remains hindered by computational inefficiency and information redundancy. Context compression methods address these challenges by significantly reducing input length and eliminating redundancy. We propose COMI, a coarse-to-fine adaptive context compression framework that jointly optimizes for semantic relevance and diversity under high compression rates. We introduce Marginal Information Gain (MIG), a metric defined as the relevance of a unit to the input query minus its semantic redundancy with other units, guiding the compression process to prioritize information that is both relevant and low redundant. The framework operates in two stages: (1) Coarse-Grained Group Reallocation, where the context is partitioned into groups and dynamically assigned compression rates based on inter-group MIG, ensuring compression budgets align with information value distribution; and (2) Fine-Grained Token Merging, where tokens within each group are fused via an intra-group MIG-based weighting mechanism, thereby preserving key semantics while avoiding the accumulation of redundancy. Extensive experiments across question-answering (e.g., NaturalQuestions, 2WikiMQA, HotpotQA and NarrativeQA), summarization (e.g., MultiNews) with various backbones (e.g., LLaMA-2-7B, Qwen2-7B) show that COMI outperforms existing baselines by a large margin, e.g., approximately 25-point Exact Match (EM) improvement under 32x compression constraint with Qwen2-7B on NaturalQuestions.
Abstract:Video large language models have demonstrated remarkable capabilities in video understanding tasks. However, the redundancy of video tokens introduces significant computational overhead during inference, limiting their practical deployment. Many compression algorithms are proposed to prioritize retaining features with the highest attention scores to minimize perturbations in attention computations. However, the correlation between attention scores and their actual contribution to correct answers remains ambiguous. To address the above limitation, we propose a novel \textbf{C}ontribution-\textbf{a}ware token \textbf{Co}mpression algorithm for \textbf{VID}eo understanding (\textbf{CaCoVID}) that explicitly optimizes the token selection policy based on the contribution of tokens to correct predictions. First, we introduce a reinforcement learning-based framework that optimizes a policy network to select video token combinations with the greatest contribution to correct predictions. This paradigm shifts the focus from passive token preservation to active discovery of optimal compressed token combinations. Secondly, we propose a combinatorial policy optimization algorithm with online combination space sampling, which dramatically reduces the exploration space for video token combinations and accelerates the convergence speed of policy optimization. Extensive experiments on diverse video understanding benchmarks demonstrate the effectiveness of CaCoVID. Codes will be released.
Abstract:Large Language Models (LLMs) demonstrate exceptional capability across diverse tasks. However, their deployment in long-context scenarios is hindered by two challenges: computational inefficiency and redundant information. We propose RAM (Read As HuMan), a context compression framework that adopts an adaptive hybrid reading strategy, to address these challenges. Inspired by human reading behavior (i.e., close reading important content while skimming less relevant content), RAM partitions the context into segments and encodes them with the input query in parallel. High-relevance segments are fully retained (close reading), while low-relevance ones are query-guided compressed into compact summary vectors (skimming). Both explicit textual segments and implicit summary vectors are concatenated and fed into decoder to achieve both superior performance and natural language format interpretability. To refine the decision boundary between close reading and skimming, we further introduce a contrastive learning objective based on positive and negative query-segment pairs. Experiments demonstrate that RAM outperforms existing baselines on multiple question answering and summarization benchmarks across two backbones, while delivering up to a 12x end-to-end speedup on long inputs (average length 16K; maximum length 32K).
Abstract:The deployment of Large Language Models (LLMs) in long-context scenarios is hindered by computational inefficiency and significant information redundancy. Although recent advancements have widely adopted context compression to address these challenges, existing research only focus on model-side improvements, the impact of the data distribution itself on context compression remains largely unexplored. To bridge this gap, we are the first to adopt a data-centric perspective to systematically investigate how data distribution impacts compression quality, including two dimensions: input data and intrinsic data (i.e., the model's internal pretrained knowledge). We evaluate the semantic integrity of compressed representations using an autoencoder-based framework to systematically investigate it. Our experimental results reveal that: (1) encoder-measured input entropy negatively correlates with compression quality, while decoder-measured entropy shows no significant relationship under a frozen-decoder setting; and (2) the gap between intrinsic data of the encoder and decoder significantly diminishes compression gains, which is hard to mitigate. Based on these findings, we further present practical guidelines to optimize compression gains.
Abstract:We investigate the functional role of emergent outliers in large language models, specifically attention sinks (a few tokens that consistently receive large attention logits) and residual sinks (a few fixed dimensions with persistently large activations across most tokens). We hypothesize that these outliers, in conjunction with the corresponding normalizations (\textit{e.g.}, softmax attention and RMSNorm), effectively rescale other non-outlier components. We term this phenomenon \textit{outlier-driven rescaling} and validate this hypothesis across different model architectures and training token counts. This view unifies the origin and mitigation of both sink types. Our main conclusions and observations include: (1) Outliers function jointly with normalization: removing normalization eliminates the corresponding outliers but degrades training stability and performance; directly clipping outliers while retaining normalization leads to degradation, indicating that outlier-driven rescaling contributes to training stability. (2) Outliers serve more as rescale factors rather than contributors, as the final contributions of attention and residual sinks are significantly smaller than those of non-outliers. (3) Outliers can be absorbed into learnable parameters or mitigated via explicit gated rescaling, leading to improved training performance (average gain of 2 points) and enhanced quantization robustness (1.2 points degradation under W4A4 quantization).
Abstract:In industrial recommender systems, conversion rate (CVR) is widely used for traffic allocation, but it fails to fully reflect recommendation effectiveness because it ignores refund behavior. To better capture true user satisfaction and business value, net conversion rate (NetCVR), defined as the probability that a clicked item is purchased and not refunded, has been proposed.Unlike CVR, NetCVR prediction involves a more complex multi-stage cascaded delayed feedback process. The two cascaded delays from click to conversion and from conversion to refund have opposite effects, making traditional CVR modeling methods inapplicable. Moreover, the lack of open-source datasets and online continuous training schemes further hinders progress in this area.To address these challenges, we introduce CASCADE (Cascaded Sequences of Conversion and Delayed Refund), the first large-scale open dataset derived from the Taobao app for online continuous NetCVR prediction. Through an in-depth analysis of CASCADE, we identify three key insights: (1) NetCVR exhibits strong temporal dynamics, necessitating online continuous modeling; (2) cascaded modeling of CVR and refund rate outperforms direct NetCVR modeling; and (3) delay time, which correlates with both CVR and refund rate, is an important feature for NetCVR prediction.Based on these insights, we propose TESLA, a continuous NetCVR modeling framework featuring a CVR-refund-rate cascaded architecture, stage-wise debiasing, and a delay-time-aware ranking loss. Extensive experiments demonstrate that TESLA consistently outperforms state-of-the-art methods on CASCADE, achieving absolute improvements of 12.41 percent in RI-AUC and 14.94 percent in RI-PRAUC on NetCVR prediction. The code and dataset are publicly available at https://github.com/alimama-tech/NetCVR.
Abstract:Automatic evaluation is crucial yet challenging for open-ended natural language generation, especially when rule-based metrics are infeasible. Compared with traditional methods, the recent LLM-as-a-Judge paradigms enable better and more flexible evaluation, and show promise as generative reward models for reinforcement learning. However, prior work has revealed a notable gap between their seemingly impressive benchmark performance and actual effectiveness in RL practice. We attribute this issue to some limitations in existing studies, including the dominance of pairwise evaluation and inadequate optimization of evaluation criteria. Therefore, we propose CE-RM-4B, a pointwise generative reward model trained with a dedicated two-stage rollout method, and adopting unified query-based criteria. Using only about 5.7K high-quality data curated from the open-source preference dataset, our CE-RM-4B achieves superior performance on diverse reward model benchmarks, especially in Best-of-N scenarios, and delivers more effective improvements in downstream RL practice.
Abstract:Large language model (LLM)-based agents are increasingly deployed in e-commerce shopping. To perform thorough, user-tailored product searches, agents should interpret personal preferences, engage in multi-turn dialogues, and ultimately retrieve and discriminate among highly similar products. However, existing research has yet to provide a unified simulation environment that consistently captures all of these aspects, and always focuses solely on evaluation benchmarks without training support. In this paper, we introduce ShopSimulator, a large-scale and challenging Chinese shopping environment. Leveraging ShopSimulator, we evaluate LLMs across diverse scenarios, finding that even the best-performing models achieve less than 40% full-success rate. Error analysis reveals that agents struggle with deep search and product selection in long trajectories, fail to balance the use of personalization cues, and to effectively engage with users. Further training exploration provides practical guidance for overcoming these weaknesses, with the combination of supervised fine-tuning (SFT) and reinforcement learning (RL) yielding significant performance improvements. Code and data will be released at https://github.com/ShopAgent-Team/ShopSimulator.